TABLE 11

DESCRIPTION OF INJECTION ZONE

 Source: Induction Electric Log, Ed Katz & Hillcrest Dil Co., Alonzo Taylor - No. 1, Duval County, Texas.

 Location: Approximately 7,350 feet east of proposed URI injection well.

	DEPTH	THICKNESS
DESCRIPTION	FT	FT.
Overlying Strata	3,455 - 3,575	120
Injection Interval (Proposed)	3,575 - 4,975	1,400
Underlying Strata	4,975 - 5,319	344

TABLE 12

INJECTION ZONE CHARACTERISTICS

Source: TDWR well data forms or permits

			Well No.	
Descr	iption	MDH 70	MDW 153	MDH 168
1.0	General Reference			
	Operator	Chemical Waste Management	CCPC	Everest Mineral
	Formation	Miocene	Jackson	Wilcox
	Approximate Interval, Feet	3470-47 00	7130-7800	5610-6500
2.0	Cheracteristics			
2.1	Air Permeability, md	1890	1700 to 2700	N/A
	Liquid (Brine) Permeability*, md	1000	250 to 500 500	125
2.2	Porosity Range, %	23-30	N/A	5-33
	Typical	30	30	25
2.3	Bottom Hole Data			
	Temp., F.	135	150	150
	a Depth, ft.	N/A	N/A	N/A
	Pressure, psi	1400	N/A	N/A
	9 Depth, ft.	3470	N/A	N/A
	Gradient psi/ft	0.4	0.43	0.46
	fracture Gradient, psi/f	0.68	0.70	0.7

^{*}Typically a value used in pressure build-up calculations reported in the permit.

8.4. Bottom Hole Pressure

The static formation pressure reported in the "Well Data Report" for well WDW-250 (completed in the Yegua) is 1770 psig at a depth of 4377 feet. This corresponds to a hydrostatic gradient ft. 4044 psi/ft. Therefore, .4044 psi/ft will be assumed for this study area.

8.5. Bottom-Hole Temperature

The bottom hole temperature for WDW-250 (completed in the Yegua) was 169 degrees Fahrenheit at 4390 ft. This corresponds to a 1.8 degree/100 ft. gradient using 90 degrees as the surface temperature. Assuming this gradient at the proposed Vasquez project, the bottom hole temperature at the top of the Yegua (3575 feet) would be 155 degrees Fahrenheit.

8.6. Fracture Gradient

Fracture gradients depend on site-specific characteristics and well conditions. According to the equation developed by Hubbert and Willis (1957), pressures required to fracture increase with the injection history of the well. Thus, maximum allowable wellhead pressures set by initial fracture gradients are conservative.

Using Eaton's correlations and equations, which are discussed in more detail in Chapter 7.1, a fracture gradient of .6959 psi/ft has been estimated for this area and depth.

8.7. Formation Water Analysis

The analysis of the formation water collected from URI's WDW-250 in Duval County is shown in Table 14. This well was completed in the same zone (upper Yegua) as the well proposed in this application and should be comparable. The TDS solids of 83,000 ppm seen here for WDW-250 is the value used in calculations in this report for BHP increases expected in improperly plugged wells.

TABLE 13

PERMEABILITIES AND POROSITIES IN THE YEGUA FORMATION (1)

Duval and Counties Immediately Surrounding

		Permeability	Porosity	
County	Sand	(ml)	(percent)	Field
Brooks				
Duval	Yegus	600	32.0	Cole South
	B-Sand	1,500	10.0	Thanksgiving
	Dinn	1,250	33.5	Thanksgiving
	Pettus B	300	29.5	Cox-Haumon B
im Hogg	Colorado	639	29.1	Colorado
	3000 Ft	800	28.0	Colorado
	Rosenberg	100	24.0	Penrose-Howe
	Colorado Sd	117	26.6	Romeo
	Pettus 5000 ft	250	25.0	Well
Jim Wells				
a Salle				
ive Oak	Yegus	200	27.0	Ramirena Southwest
IcMullen	Pettus	229	37.5	Campana South
ebb	Yegus F	508	30.7	Zamet
	Yegua C	1344	30.0	Presa De Oro
	f Zone	550	30.7	Presa De Oro
	Yegua F	611	32.4	Zimet
	H Zone	740	28.2	Presa De Oro
	G Zone	1985	32.0	Presa De Oro
	Yegua G	832	28.4	Zimet
ebb	Yegus H	700	29.0	Zimet
	Yegua-Rosenberg	527	32.7	Gutierrez
	Middle-Rosenberg	592	31.0	Tal Vez
	First Pettus-Yegu	450	33.0	Glenn
	Bruni	420	30.1	De Sapin, SE
	Rosenberg C Sd	178	29.5	Carolina-Tex, West
	Bruni Sd	800	30.0	Dilton
	Yegua	115	30.0	St. Joseph
	Yegua-Pettus	1200	28.0	McLean

TABLE 14

FORMATION WATER ANALYSIS

Welt Data Report on:	MOW-250
PH	7.47
Calcium	6,280
Nagnesium	535
Sodium (calc.)	21,400
Carbonate	0
Bicarbonate	128
Sulfate	64
Chloride	51,920
Total Dissolved Solids (calc.)	83,113
Mardness (as CaCO3)	• .
Fe (dissolved)	15
Barium	36
Sp. Gr. a 60 Degrees F.	1.064